Cold Thermogenesis is a Hormetic Stressor
<markdown>
tyw Cold Thermogenesis is a Hormetic Stressor
Dr Jack Kruse popularised the notion of &quot;Cold Thermogenesis&quot; (CT) in late 2011 to 2012 杰克·克鲁斯博士在2011年底至2012年普及了“冷生热作用”(CT)的概念 https://www.jackkruse.com/category/series-cold-thermogenesis/ I mostly assume in this post that the reader is familiar with the protocol. The purpose of this post is to be a precautionary note against potentially harmful effects of over-using CT. 在这篇文章中,我主要假设读者对协议很熟悉。这篇文章的目的是预防过度使用CT的潜在有害影响。 The practice of acute Cold Exposure is beneficial. I do not need to go into the benefits here, since those have been covered in depth at other sources. Either way, it&apos;s a great thing when done in tolerable amounts (tolerance will vary), and most people probably aren&apos;t exposing themselves to enough cold. 急性冷暴露的做法是有益的。我不需要在这里详细说明这些好处,因为这些已经在其他来源深入讨论过了。不管怎样,如果能在可承受的范围内进行,这都是一件很棒的事情(耐受性各不相同),而且大多数人可能都没有把自己暴露在足够的寒冷中。 But there are mis-understandings behind the definition of charge that lead to some bad conclusions about cold &quot;always being good for you&quot;. 但在电荷的定义背后存在着误解,导致一些关于冷“总是对你有好处”的不好结论。 Hall Effect霍尔效应 Firstly, Kruse mentions that cold &quot;increases the Quantum Hall Effect&quot;. 首先,Kruse提到寒冷“增加了量子霍尔效应”。 I don&apos;t buy the Hall Effect. Miles Mathis gives a mechanistic explanation for what it is 我不相信霍尔效应。迈尔斯·马西斯给出了一个机械的解释 http://tanyewwei.com/notes/mm-hall-effect/ He has shown that the Hall Effect is not some magic Quantum nonsense, but just an interaction between 2 seperate charge fields. In only happens when an external field is supplied. It does not magically &quot;increase energy in the system&quot;. 他已经证明霍尔效应并不是什么神奇的量子废话,而是两个独立电荷场之间的相互作用。只有在提供外部字段时才会发生。它不能神奇地“增加系统的能量”。 To see if the Hall Effect is useful in biology, we have to discuss it in relation to biologic structures. I cannot see enough evidence that the Hall effect is actually significant in biologic tissues. 为了了解霍尔效应在生物学上是否有用,我们必须讨论它与生物结构的关系。我没有看到足够的证据证明霍尔效应在生物组织中是重要的。 Sidenote on Magnetico (Sleeping over a strong static magnetic field) 磁力线旁注(在强静磁场下睡觉) The experiments by Robert Becker prove that applying a strong magnetic field perpendicular to the neurons of a salamander could induce unconcsiousness / anesthesia. This is simple enough to explain using Mathis&apos; model. 罗伯特·贝克尔的实验证明,垂直于蝾螈神经元的强磁场可以诱导无意识/麻醉。这很容易用马西斯的模型来解释。 A strong external magnetic field will cancel the emitted magnetic photons from neuronal structures (again, &quot;magnetism&quot; is just another part of the charge field, as is composed of photons). This will basically shut down certain inter-neuron communication channels, and induce unconsciousness. 一个强大的外部磁场会抵消神经元结构发出的磁性光子(同样,“磁性”只是电荷场的另一部分,因为它是由光子组成的)。这基本上会关闭某些神经元间的交流通道,并导致无意识。 Becker clearly showed that turning the magnetic field 90 degrees induced excitability in his salamnaders. Again, simple mechanics, since now your photons are enhancing the output field of neurons.贝克尔清楚地表明,将磁场旋转90度就能诱导蝾螈的兴奋性。再一次,简单的力学,因为现在你的光子增强了神经元的输出场。 Some Common Sense 一些常识 If we&apos;re so good in the cold, why use a body temperature of 37C? 如果我们在寒冷中这么舒服,为什么要用37摄氏度的体温呢? Why do birds have a body temperature of 40-43C, have better tolerance to the cold, and have less leaky mitochondria? If we had the mitochondria of birds, we&apos;d live 3 times as long and never get cancer. (elaboration in Nick Lane&apos;s books, &apos;Power, Sex, and Suicide&apos;) 为什么鸟类的体温在40-43摄氏度,耐寒能力更强,线粒体渗漏更少?如果我们有鸟类的线粒体,我们的寿命将是鸟类的三倍,而且永远不会得癌症。(在尼克·莱恩的《权力、性和自杀》一书中详细阐述) Body temperature rises during CT. Isn&apos;t it the biologic reaction to cold (producing heat) that we&apos;re after? CT检查时体温升高。这难道不是我们所追求的对寒冷(产生热量)的生物反应吗? Rheterical question: What happens when we cannot uncouple to produce heat? Chaos ensues! 反问:当我们不能分离产生热量时会发生什么?混乱随之而来! Superconductivity (or super-non-conductivity)超导 Back to some mechanics. Kruse claims that &quot;cold increases superconductivity&quot;, or that &quot;we get more energy efficient as we reduce temperatures closer to the Curie Temperature&quot;. 回到一些机制。Kruse声称“低温可以提高超导性”,或者“当我们将温度降低到居里温度附近时,我们的能源效率会更高”。 First, the curie temperature of bone is 125C, and that of most collagen types is around 92C. 首先骨骼的居里温度是125摄氏度,大多数胶原蛋白类型的居里温度在92摄氏度 Ref: http://link.springer.com/article/10.1007/BF01857614#page-1 We are operating far below this temperature. ie: Any drop in temperature is not going to affect the &quot;magnetic coherence&quot; of collagen structures in the body. 我们的工作温度远低于这个温度。例如:任何温度的下降都不会影响体内胶原蛋白结构的“磁相干性”。 The most important metric for collagen and bone conductivity is hydration, so water is the most important. But then again, we need to understand how EZ water works. 衡量胶原蛋白和骨传导率最重要的指标是水合作用,所以水是最重要的。但话又说回来,我们需要了解EZ水是如何工作的 http://tanyewwei.com/notes/mm-pollack/
EZ水,英文是Exclusive zone water,中文翻译为:“禁区水”,或者“禁入区水”。定义这个“水”的概念的人,是杰拉德·波拉克(Gerald H.Pollack),华盛顿大学生物工程系教授,宾夕法尼亚大学博士,科技期刊《水》的创始人以及总编辑。在《水的第四阶段》(The Fourth Phase of Water)一书中杰拉尔德·波拉克(Gerald Pollack)巧妙地提出了一种水化学的新理论,这一理论不仅对化学和生物学具有深远意义而且对我们理解自然和对待自然的隐喻基础也具有深远意义。
波拉克教授经过多年的研究发现:水不仅仅有固态、液态和气态三种相,水还存在第四种相—液晶态。
假设一烧杯水,有成千上万个塑料微球体悬在其中。标准化学会认为这些微球体在水中会平均分布——它们遍布于水的大部分区域。然而,在烧杯的周边(即使任何亲水性物质沉入水中),水却仍然清澈,没有任何球体。原因何在?标准化学预测几个分子厚度的禁区可能存在于玻璃周围,两极的水分子和分散的电荷粘在了一起,但是波拉克所观察到的禁水区至少有1/4毫米厚——这是数以万计的分子的厚度。
波拉克和同事小心翼翼地进行着实验,通过测试最终排除各种对此现象的传统解释(比如对流、聚合物冲刷、静电排斥、材料泄露)。他们还开始了研究禁水区的特性,结果令人欣喜:禁区水几乎排斥一切,不仅包括悬浮的微粒而且包括溶质。禁区水在270纳米时表现出电磁吸收顶峰,比散装水释放出更少的红外辐射,但其粘度和折射指数都高于散装水。更令人吃惊的是,他们发现禁水区有一种净负电荷,而周边的书PH值较低,这表明有质子从禁区水中喷射了出来。
凭借这些信息,波拉克和同事做出假设:禁水区由水的液晶体组成,其中氧和氢以2:3的比例堆积成一层层的六边形。当然,冰也是由六边形的薄片堆积而成,但冰片的堆积靠的是外在质子的挤压。波拉克认为禁区层比较例外,排列的方式使得每层的氧和临近层的氢常常相邻。这种排列并不非完美无瑕,其产生的引力要大于斥力,足以产生内聚和分子矩阵,从而可以排除哪怕是最小体积的溶质。
哪里来的能量造成了这种电荷分离?它来自于入射的电磁辐射。当水样被免于电磁辐射和热流时,禁水区就无法形成。 Exclusion zone water现象,系指在水溶液中胶体粒子等大型溶质无法靠近多种亲水性表面,形成数十到数百微米厚的“空乏区”,简称为EZ。目前提出的理论认为此处形成了特殊结构水,然而,台湾学者的实验使用磁珠却可穿入EZ区。因此提出EZ是由扩散渗流(diffusiosmosis)与扩散泳(diffusiophoresis)综合造成的想法来解释。应用此研究结果,可发展新的溶质过滤萃取方式,或利用离子交换产生的流场作为新的发电方式。 从化学角度来分析,EZ水,就是H3O2。H3O2 = H2O + ·HO。也就是说,一个水分子,加上一个氢氧根。这种分子结构与普通水或者冰的结构完全不同,它是具有活性的。有人说是具有记忆,或者是智力,这些还有待研究。
EZ水对人体最大的好处,就是一种负离子水。氢氧离子,化学符号为OH-。其中氢和氧之间以共价键连接,整体带一单位的负电荷。常常与不同的元素组成氢氧化物。我们在生活中,经常见到负氧离子的空气。负离子的主要功能:负离子有镇静、镇痛、镇咳、止痒、利尿、增食欲、降血压之效。比如雷雨过后,空气的负离子增多,人们感到心情舒畅。
我们见到的最多的EZ水,有两个地方:一个就是高山或两极地区的水,另一个就是雷雨之后的雨水。
Again, Mathis gives us a mechanistic explanation of what exactly &quot;superconductivity&quot; means. 马西斯再一次从力学的角度解释了“超导性”的确切含义。(my excerpts here我在这里摘录:http://tanyewwei.com/notes/mm-heat/) This should be called super-non-conductivity. &quot;Conductivity&quot; means that a material doesn&apos;t interfere with any charge that is flowing through it. 这应该称为超非导电性。“导电性”指的是一种材料不会干扰流经它的电荷。 A superconducting material becomes worthless as an energy source, but becomes tremendous as a means of charge transmission between two or more places. 超导材料作为一种能量来源变得毫无价值,但作为两处或多处电荷传输的一种手段,它却变得极其重要。 There is no energy being created. If you do not have enough energy to go round in the body in the first place (either not enough input, or not able to mobilise stored energy), getting your collagen fibers super-conducting isn&apos;t going to help you at all. 没有能量被创造出来。如果你没有足够的能量在体内循环(要么没有足够的输入,要么不能调动储存的能量),让你的胶原蛋白纤维超导根本不会帮助你。 But then again, temperature isn&apos;t a big factor for our collagen wires. Hydration is, and we need to look at what allows collagen to be used in the body (again, biologic phenomena, not strictly physical) 但话又说回来,温度对我们的胶原蛋白丝来说不是一个大因素。水合作用是,我们需要看看是什么让胶原蛋白在体内被使用(同样,这是生物现象,而不是严格的物理现象) On to Collagen … 说到胶原蛋白…… We know that the most important signalling happens along lines of collagen, actin, and integrin networks in the body, surrounding by cell water. 我们知道,最重要的信号传递发生在被细胞水包围的体内的胶原蛋白、肌动蛋白和整合素网络。 I couldn&apos;t find research on actin and integrin, but there is a ton of work on collagen. I&apos;ll summarise some of the findings below. 我找不到关于肌动蛋白和整合素的研究,但有很多关于胶原蛋白的研究。我将在下面总结一些发现。 It is important to note that: 值得注意的是: ?We usually want higher conductivity of collagen to maximise signalling.我们通常需要更高的胶原传导率来最大化信号传递。 ?We want to be able to modulate collagen formation. 我们希望能够调节胶原蛋白的形成。 ?Different types of collagen will have different optimal operating temperatures.不同类型的胶原蛋白有不同的最佳操作温度。 Fish skin collagen conductivity peaks at 320-350K (46-76C), which is above body temperature. 鱼皮肤胶原蛋白的传导率在320-350K (46-76C)之间达到峰值,高于体温。 http://connection.ebscohost.com/c/articles/52588260/electrical-conductivity-fish-skin-collagen-temperature-range-290-380-k 24% hydrated (with water) Bovine achilles tendon collagen obeys conductivity equation σ(h) = A exp (h / T) 牛跟腱胶原蛋白服从电导率方程σ(h) = A exp (h / T) http://onlinelibrary.wiley.com/doi/10.1002/bip.1974.360131203/abstract So the higher the temperature, the lower the conductivity. 所以温度越高,电导率越低。 But not by much …. 但也不是很多…. The term &apos;A&apos; is a dimentionless scaling factor that is independent of temperature, so to see how much difference we can measure at different temperatures, we just need to look at the &apos;exp (h / T)&apos; term. 术语“A”是一个独立于温度的无量纲比例因子,所以要知道在不同的温度下我们可以测量多少差异,我们只需要看看“exp (h / T)”项。 Assuming: 假设: ?h = 0.24 (24%) ?T1 = 283 Kelvin (10C, which is &quot;optimal CT temperature&quot; according to Kruse)T1 = 283开尔文(10C,根据Kruse的“最佳CT温度”) ?T2 = 310 Kelvin (body temp) exp(h / T1) = 1.0008484162387228 exp(h / T2) = 1.000774493313566 efficiencylost = 1.000774493313566 / 1.0008484162387228 = 0.9999261397390881 T2 = 310k(体温) exp(h / T1) = 1.0008484162387228 效率损失= 1.000774493313566 / 1.0008484162387228 = 0.9999261397390881 In other words, a lost of less than 0.0001% of electrical conductivity due to temperature. 换句话说,温度导致的导电性损失小于0.0001%。 Hydration is the far bigger factor – ie: protein function is far dependent on water chemistry than temperature.水合作用是一个大得多的因素,也就是说,蛋白质的功能对水化学的依赖性远远大于温度。 Other studies show that this temperature-dependent conductivity is actually context dependent: 其他研究表明,这种与温度有关的电导率实际上与环境有关: http://iopscience.iop.org/0967-3334/24/3/312 Quote: in the range of 25 °C < T < 90 °C, the thermal conductivity, as for sheep collagen, varied linearly with temperature. 引用: 在25°C < T < 90°C范围内,绵羊胶原蛋白的导热系数随温度呈线性变化。 ie: better conductivity with increasing temperature. Opposite of what Kruse says. 即:随着温度的升高,导电性更好。跟克鲁斯说的正好相反。 Type 1 collagen is unique, in that is cannot form helixes above 30C 1型胶原蛋白独特,在30C以上无法形成螺旋 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC122187/ This is where the temperature dependence is important. Type 1 collagen is more an external structural collagen, found in tendons, ligaments, and some muscles. 这就是温度依赖性很重要的地方。1型胶原蛋白更多的是一种外部结构胶原蛋白,存在于肌腱、韧带和一些肌肉中。 To quote the study In addition to simplifying the clean-up, the other advantage of such design could be the following. Apparently, helices confined in fibers cannot melt completely because their confinement would not allow chains to gain as much entropy as in solution (15). Nevertheless, the molecules can melt and refold locally as needed (1), giving fibers their great combination of strength and elasticity. 引用这项研究: 除了简化清理,这种设计的另一个优点可能如下。显然,螺旋被限制在纤维中不能完全熔化,因为它们的限制不允许链获得像在溶液中那样多的熵。然而,这些分子可以根据需要在局部熔化和折叠,从而赋予纤维强大的强度和弹性。 That makes total sense for tissues with high recycling and turnover requirements. You would &quot;dissolve&quot; collagen so that it would get to the right places, and then &quot;let it set&quot; in the cooler peripheral regions of the body. 这对于具有高回收和周转要求的组织来说是完全合理的。你要“溶解”胶原蛋白,让它到达正确的地方,然后让它在身体较冷的外围区域“凝固”。 But for tissues like the brain or heart, which operate consistently at high temperatures (35-37C), you don&apos;t see high protein turnover, and instead the only factor for efficiency considerations is conductivity of the carbon nanotubes. 但对于像大脑或心脏这样在高温(35-37摄氏度)下持续工作的组织来说,你看不到高蛋白质周转,相反,考虑效率的唯一因素是碳纳米管的导电性。 ie: how much conductor and resonant electrical states can dendrite microtubules hold to support consciousness. 即:树突微管能容纳多少导体和共振电状态来支持意识。 Hameroff et al have been working to show that coherence in brain microtubules can be maintained at high temperatures. Hameroff等人一直致力于证明大脑微管的一致性可以在高温下保持。 http://arxiv.org/pdf/1405.3170.pdf But I think the more important thing to note is Miles Mathis&apos; destruction of Quantum Tunneling and superposition states. 但我认为更重要的是要注意迈尔斯·马西斯对量子隧道态和叠加态的破坏。 ?http://tanyewwei.com/notes/mm-tunneling/ ?http://tanyewwei.com/notes/mm-superposition/ NOTE: This will require that I re-think the entire Orch-OR model, replacing their &quot;collapse of superposition states&quot; with something more concrete. It is likely not too difficult, since &quot;dipole states&quot; of tubulin sheets could just be simple regions of charge, and measurement obviously causes charge to flow from the measured object to the measuring object (&quot;destroying the superposition&quot; by taking away the charge of the measured object). In that sense, I still think that the Orch-OR model can be useful. Moreover, by re-working it, I will probably have more insight into how the brain actually uses those charge transfers to create consciousness. 注意: 这需要我重新思考整个Orch-OR模型,用更具体的东西取代它们的“叠加态的坍塌”。这可能并不太困难,因为微管蛋白片的“偶极子状态”可能只是简单的电荷区域,测量显然会导致电荷从被测物体流向被测物体(通过拿走被测物体的电荷来“破坏叠加”)。 从这个意义上说,我仍然认为Orch-OR模型是有用的。此外,通过重新工作,我可能会更深入地了解大脑实际上是如何利用这些电荷传输来创造意识的。 Sidetrack to Blood Oxygen Carrying Capacity血液携氧能力 Kruse says that &quot;Cold allows blood to contain more oxygen&quot;. Well …. yes, but cold puts in oxygen in the blood, but doesn&apos;t help with tissue oxygen delivery. 克鲁斯说:“寒冷会让血液中含有更多的氧气。”嗯…是的,但寒冷会让氧气进入血液,但不会帮助组织输送氧气。 Wikipedia will tell you that higher temperatures provide more oxygen to tissues, and less oxygen affinity to hemoglobin.维基百科会告诉你,更高的温度会为组织提供更多的氧气,而对血红蛋白的氧亲和力则会降低。 https://en.wikipedia.org/wiki/Oxygen_saturation_(medicine) Again, this can be a good thing in certain cases. Oxygen is dangerous when not controlled properly (see Nick Lane&apos;s book, &apos;Oxygen&apos;). 同样,这在某些情况下是一件好事。当氧气控制不当时是危险的(参见尼克·莱恩的书《氧气》)。 If you have a tissue that has sustained trauma, you would want to prevent further oxidative metabolism. So you cool it. 如果你的组织遭受了创伤,你会想要阻止进一步的氧化代谢。所以你冷静下来。 If you have a tissue that requires a lot of oxygen to work, you need to ramp up oxidative metabolism. So you keep it operating at normal temperatures (30-37C) 如果你的组织需要大量的氧气来工作,你就需要加速氧化代谢。让它在正常温度下工作(30-37℃) The statement &quot;cold increases energy in the system&quot; is not factual in a biologic organism. “寒冷增加系统能量”的说法在生物有机体中是不真实的。 Sidetrack to Blood CO2 Levels 转到血液中的二氧化碳水平 It&apos;s been known for quite awhile now that CO2 is heavily involved in Hemoglobin&apos;s ability to deliver Oxygen to the appropriate tissues. We also know that respiratory rate falls under hypothermia, CO2 tension generally decreases, and the ability to deliver oxygen is reduced. 众所周知,二氧化碳与血红蛋白向适当组织输送氧气的能力密切相关。我们也知道体温过低时呼吸频率降低,二氧化碳张力降低,输送氧气的能力降低。 It is the interest of good health to maintain a good metabolic state, where metabolic substrate (carbohydrate, fats, etc …) are oxidised completely, and to produce appropriate levels of CO2. 保持良好的代谢状态是健康的利益所在,在这种状态下,代谢底物(碳水化合物、脂肪等)被完全氧化,并产生适当水平的二氧化碳。 Sidenote: One of the arguments for carbohydrate driven metabolism is that we can produce more CO2 (and NAD+ to support further oxidative metabolism) as compared to the oxidation of fats. 旁注:碳水化合物驱动代谢的一个论点是,与脂肪的氧化相比,我们可以产生更多的CO2(和支持进一步氧化代谢的NAD+)。 A successful response to cold exposure involves either maintaining core body temperature, or even raising it slightly. This is a good indicator of a successful response to Cold Thermogenesis, and one possible methodology may be to perform CT only if core temperature can be maintained. 对寒冷暴露的成功反应包括要么保持核心体温,要么甚至稍微提高它。这是成功响应冷生热的一个很好的指标,一种可能的方法可能是只在核心温度可以保持的情况下进行CT。 Still, it is important to realise that cold itself being a stressor demands a stress response. WIm Hof talks about how it is an adrenaline raising experience :D . Again, at the correct dose, this promotes resilience to stress, and at a high dose, you have a chronically elevated stress state (high glucocorticoids, poor blood sugar regulation, etc …) 尽管如此,重要的是要认识到,寒冷本身就是一个压力源,需要一个压力反应。维姆·霍夫(WIm Hof)谈到这是一种肾上腺素上升的体验:D。同样,在正确的剂量下,这可以提高对压力的适应力,而在高剂量下,你会有一个长期升高的压力状态(高糖皮质激素,低血糖调节,等等…) Anyway, on to other topics … 好了,说到其他话题…… Cooling of the Surface Tissues 表面组织的冷却 One of the claims that Kruse makes is that cooling of the surface layers &quot;increases energy in the system by way of Topological Insulators&quot;. Kruse提出的一个观点是,表面层的冷却“通过拓扑绝缘体的方式增加了系统的能量”。 I will look at this topic from the perspective of the skin and superficial layers as an interfacial layer (interface between inside and outside the body). 我将从作为界面层(身体内外的界面)的皮肤和表层的角度来看待这个话题。 One of the of areas which we can look to is Chinese Acupuncture. The acupuncture points and meridians are clearly points where there are high EMF fields detected. 我们可以研究的领域之一是中国针灸。穴位和经络明显是检测到高电磁场的穴位。 http://www.i-sis.org.uk/lcm.php Ignore the bombastic descriptions of &quot;liquid crystalline structure&quot; from the previous paper, but the behaviourial description still hold true – these &quot;collagen wires&quot; are regions of increased charge flow which connect various parts of the body. 忽略上一篇论文中对“液晶结构”的浮华描述,但行为描述仍然是正确的——这些“胶原蛋白线”是连接身体各个部位的电荷流动增加的区域。 If Cold Exposure were to induce energetic efficiencies that affect tissues below the surface, it is these collagen pathways which will be responsible for affecting the deeper organs like the heart, kidneys, liver, brain, etc… 如果低温暴露能诱导能量效率影响表面以下的组织,那么正是这些胶原蛋白途径将负责影响更深的器官,如心脏、肾脏、肝脏、大脑等… Since these are &quot;charge wires&quot;, super-(non)-conductivity, and thus cooling would be beneficial here. The questions are: 由于这些是“电荷线”,超(非)导电性,因此冷却在这里是有益的。问题是: ?Can we actually cool these collagen meridians to any significant degree to improve biologic function?我们真的能有效地冷却这些胶原蛋白经络来改善生物功能吗? ?Is it worth the tradeoff of extra biological adaptations and/or stress needed to deal with the cold? 是否值得牺牲额外的生物适应性和/或应对寒冷所需的压力? Note: Yes, you can cool blood too. But cooling blood alone is (a) not a significant means to cool the body, (b) clearly detrimental to normal function (for the reasons given prior in this post). Cooling the blood is great for stuff like treating brain trauma though. 注:是的,你也可以冷却血液。但是仅仅冷却血液并不是冷却身体的重要手段,(b)显然对正常功能有害(原因在本文之前已经给出)。不过,冷却血液对治疗脑外伤之类的事情很有好处。 http://thejns.org/doi/abs/10.3171/jns.2004.100.2.0272 So regarding the Skin being an interface, I think that skin is simply a homogenous interfacial layer, and does not confer specific efficiencies to the rest of the body. 因此,关于皮肤作为一个界面,我认为皮肤只是一个均匀的界面层,并没有赋予身体的其他部分特定的效率。 I think of because known accupuncture points, which apart from the hands, feet, and head, are very deep. 我想是因为已知的穴位,除了手、脚和头,都很深。 http://www.hindawi.com/journals/ecam/2013/740508/ Meridian Depth and a Sidenote on Laser Acupuncture 经络深度与激光针灸边注 We&apos;re talking about at least 10mm deep in most acupuncture points, and up to 50mm. There seems to be good evidence that red lasers in the low 800nm range can reach 30mm. 我们说的是大多数穴位至少10毫米深,甚至50毫米深。似乎有很好的证据表明,红色激光器在低800nm范围内可以达到30mm。 https://www.google.com/patents/US6312451 UV lasers don&apos;t penerate as deep. 紫外线激光穿透不深。 http://www.researchgate.net/publication/234720204_Comparison_of_wavelength-dependent_penetration_depths_of_lasers_in_different_types_of_skin_in_photodynamic_therapy So pulsed lasers in the low 800nm range it is. Thankfully these are pretty safe to use, so I think- 所以脉冲激光在800纳米的范围内。谢天谢地这些都很安全,所以我认为- Back to the Skin as an Interface 回到作为连接口的皮肤 But back to the skin, if it truly did impart a direct effect by virtue of continuous collagen wires to the various systems of the body, then we wouldn&apos;t have to needle as deep as we do. 但回到皮肤上,如果它真的通过连续的胶原蛋白线直接作用于身体的各个系统,那么我们就不需要像现在这样扎得那么深。 It would also make sense that the skin acts as a barrier, shielding all but a few surface meridians from the external world. 皮肤作为屏障,除了表面的几个经络外,将所有经络与外界隔绝,这也说得通。 I base my premise on the fact that in order to get good treatment, you need to activate both the surface and internal meridians. 我的前提是为了得到好的治疗,你需要激活表面和内部的经络。 So what does the skin do on an energetic basis? Personally, I think that it simply transduces incoming light to an energy level which the body can use. 那么皮肤在能量的基础上做什么呢?就我个人而言,我认为它只是将入射光转换为身体可以使用的能量水平。 Does cold help in this process? I personally think that the answer is NO.感冒在这个过程中有帮助吗?我个人认为答案是否定的。 ?You know those Bio-impedence scales used to measure body fat? We know that increased temperatures increases conductivity in the skin.你知道用来测量身体脂肪的生物阻抗量表吗?我们知道温度升高会增加皮肤的导电性。http://europepmc.org/abstract/med/3193865 ?Melanin, the magical compound which can transform any light into IR light, again is dependent mostly on Hydration status.黑色素是一种神奇的化合物,它能将任何光线转化为红外光,同样主要依赖于水合状态。 http://www.pnas.org/content/109/23/8943.full If you look at their data, it is likely that increasing temperature increases conductivity, which is just a way of saying that it can channel and transduce more incoming light to usable energy for the body. Hydration is still the primary factor, not temperature. 如果你看看他们的数据,很可能温度升高会增加电导率,这只是一种说法,它可以引导和传导更多的入射光,为身体提供可用的能量。 水合作用仍然是主要因素,而不是温度。 I still think that the cold is important information for the body. It can send a signal to the rest of system, and through biologic processes, tell the system to do stuff like become more efficient with Thyroid hormones, make more melanin (maybe because there isn&apos;t enough energy), become more sensitive to testosterone, etc …. 我仍然认为寒冷是身体的重要信息。它可以向系统的其他部分发送信号,并通过生物过程,告诉系统做一些事情,比如提高甲状腺激素的效率,产生更多的黑色素(可能是因为没有足够的能量),对睾丸激素更敏感,等等…. But again, this is a biologic process, and one that will be fraught with biologic drivers. eg: Northern guy like you probably will intrinsically uncouple respiration more so that a skinny tropical lanky fucker like me. Cold can actually help you mobilise more usable energy through the biologic process of your more-uncoupled mitochondrial respiration process. 但是,这是一个生物过程,一个充满生物驱动的过程。像你这样的北方人可能会本能地多呼吸,这样像我这样的热带瘦骨嶙峋的混蛋就不会呼吸了。寒冷实际上可以帮助你通过更不耦合的线粒体呼吸过程的生物过程调动更多可用的能量。 And I still can&apos;t support the hypothesis that &quot;cold increases energy&quot; or &quot;cold increases energy efficiency&quot;, when experiments point to the opposite conclusion in both biologic tissues and inorganic materials. 我仍然不能支持“寒冷增加能量”或“寒冷增加能源效率”的假设,因为在生物组织和无机材料方面的实验都指向相反的结论。 Hands and Feet are exceptions 手和脚是例外 We know that these are the areas that leak the most biophotons, and it makes sense that the collagen meridians are much closer to the surface here. 我们知道这些区域泄漏了最多的生物光子,胶原蛋白的经络更接近表面是有道理的。 Add to the fact that you have lots of venous flow, I do see a possible direct effect of cold thermogenesis of the hands and feet to other systems in the body. 再加上你有大量的静脉流动,我确实看到手和脚的冷生热作用可能对身体的其他系统产生直接影响。 Whether or not this is a good effect, is left to be determined, but personally, I suspect that it cold exposure isn&apos;t beneficial as a chronic treament. I&apos;m thinking more along the lines of cooling in conjunction with laser stimulation of the acupuncture point. 这是否是个好效果还有待确定,但我个人认为,长期暴露在寒冷环境中并不是一种有益的治疗方法。我想的更多的是冷却结合激光刺激穴位的方法。 The cooling may open up the channel to more conductivity, and the laser would activate the point better. 冷却可以打开通道以获得更大的导电性,激光可以更好地激活这个点。 Then again, whether or not you need cooling remains to be seen, but I suspect that it could be useful, but only in the hands and feet, where cooling actually draws away bloodflow, and thereby creates a situation where there is less stuff (like blood) to absorb the incoming laser – thereby allowing more efficiency in energy transfer in the laser treatment. 再说一遍,你是否需要冷却还有待观察,但我怀疑它可能有用,但只对手和脚有用,因为冷却实际上会带走血液流动,从而造成一种情况,即有更少的物质(如血液)来吸收进入的激光,从而使激光治疗中能量转移的效率更高。 But do we need more efficient energy transfer, when the meridians are already so close to the surface? My guess is NO. Which means that cold is not going to be useful in the first place. 但是,当子午线已经如此接近地表时,我们还需要更有效的能量传递吗?我的猜测是否定的。这意味着寒冷在一开始就没有用。 In the deep points, I find it hard to believe that cold would &quot;clear the way for laser activation&quot; so to speak, simply because &quot;how the hell do you cool down the inside of your thigh&quot; in order to get to one of the liver points deep in there? 在深层穴位,我发现很难相信冷会“为激光激活扫清道路”,简单地说,因为“你他妈的如何冷却你的大腿内侧”,以到达那里的一个肝点深处? My guess is that the cooling will not give a significantly large effect to be worth the extra hassle of treatment procedures, extra equipment, and of course, patient discomfort. 我的猜测是,降温不会带来显著的效果,而值得额外的治疗程序的麻烦,额外的设备,当然,病人的不适。 Conclusions for Now 结论(目前) Cold reduces energy in the organism. It slows things down, reduces their charge, whatever ….. Doesn&apos;t sound like an optimal performance scenario to me ….. 寒冷会降低机体的能量。它减慢了速度,减少了电荷,比如…..在我看来,这不像是一个最佳的性能场景….. It is still great for many scenarios – surgery and trauma treatment for example. 它在许多情况下仍然是很好的,例如手术和创伤治疗。 It is and still great in controlled doses to ilicit the appropriate biologic response. These doses will be greater than most people think – ie: most healthy people could probably benefit from getting into a freezing lake for 10 minutess. But 30 minutes? Nope. More cold is not better. (But most people are still too afraid in the cold though ….) 在控制剂量的情况下,它仍然是巨大的,可以非法产生适当的生物反应。这些剂量将比大多数人想象的要大——也就是说:大多数健康的人可能会从进入冰冷的湖泊10分钟中受益。但30分钟吗?不。越冷越好。(但大多数人仍然害怕寒冷….) But it is wrong to say that cold is fundamentally good on a physical level. It is a definitely a biologic hormetic effect. 但从物理层面上说寒冷从根本上是好的是错误的。这绝对是一种生物激效。 Hydration of Collagen is far more important for it&apos;s function than temperature in the context of the biologic system. 在生物系统中,胶原蛋白的水合作用远比温度更重要。 Wellness of collagen structures depend on the ability for them to form hydrophilic helices when needed, and become a &quot;gel-like&quot; malleable paste to be deposited where they need to go. 胶原蛋白结构的健康取决于它们在需要时形成亲水螺旋的能力,并成为“凝胶状”可延展的糊状物,在需要的地方沉积。 In this sense, I think anything that disturbs the structure of existing collagen is very troublesome. The most destructive stressors on collagen are likely, powerful non-native EMF, and various acoustic waves, which have the ability to over-excite collagen structures and cause them to lose water. 从这个意义上说,我认为任何扰乱现有胶原蛋白结构的事情都是非常麻烦的。对胶原蛋白最具破坏性的刺激可能是,强大的非天然电磁场和各种声波,它们有能力过度刺激胶原蛋白结构并导致它们失水。 Personal Testing is Required 需要个人测试 There are people who will be able to respond with the appropriate biological mechanisms to not only combat the cold, but thrive in it. There is a discrepancy of about 15% in metabolism in chronically cold-exposed humans due to uncoupling of mitochondrial ECT to produce heat. 有些人能够通过适当的生物机制做出反应,不仅能对抗寒冷,而且能在寒冷中茁壮成长。由于线粒体ECT的解偶联产生热量,在长期寒冷暴露的人类中,代谢差异约为15%。 Whether or not a particular person is able to respond to cold environments is dependent on too many factors to consider, and in my experience, has not as much to do with genetics and ancestry than it has to do with a particular person&apos;s make up (driven by forces which mainstream science cannot describe) 一个特定的人是否能够应对寒冷环境取决于很多因素需要考虑,以我的经验,没有与遗传学和血统比与一个特定的人的组成(由部队主流科学不能描述) I favour the methodology of consistent testing upon cold exposure. How is your thyroid doing? How is the coherence of various meridians and points (especially the adrenals)? How are you feeling? How are you sleeping? etc, etc …. 我赞成在冷暴露条件下进行持续测试的方法。你的甲状腺怎么样了?不同的经脉和穴位(尤其是肾上腺)是如何连贯的?你感觉怎么样?你睡得怎么样?等等,等等…… So long as measures of coherence are improving upon cold exposure, I consider it a good thing. If the opposite occurs, I will recommend backing off cold exposure until underlying issues are fixed. 我认为,只要在冷暴露后,一致性的措施得到改善,这是一件好事。如果出现相反的情况,我建议在根本问题解决之前不要冷暴露。 CT is a tool to be used appropriately. CT是一种需要适当使用的工具。 Update [Tue-17-Nov-2015]: Response to a Particular Paper 更新[tue -17- 2015年11月17日]:对一篇特定论文的回应 I was pointed to a paper &quot;Human physiological responses to immersion into water of different temperatures.&quot; 有人给我看了一篇名为《人类对浸入不同温度的水的生理反应》的论文。 which supposedly showed some of the benefits of Cold Exposure. 这显示了冷暴露的一些好处。 (http://www.ncbi.nlm.nih.gov/pubmed/10751106) Keep in mind the experimental conditions:记住实验条件: ?10 young man, aged 20-24. Youth has it&apos;s advantages ;)10个年轻人,年龄20-24岁。年轻有它的优势;) ?These were Men – no guarantee that women react the same or differently.这些都是男性——不能保证女性的反应是一样的还是不同的。 ?Full body immersion (no head) for 1 hour. This was intense!!! 全身浸泡(无头部)1小时。这很强烈! ?Skinfolds put them at 10.2% body fat on average. Lean and definitely no major issues with maintaining fat mass homeostasis. Likely no major issues with hormonal balances (no major leptin signalling issues, dopamine homeostasis working fine, etc …)皮肤褶皱显示他们的体脂平均为10.2%。瘦而且绝对没有维持体内脂肪平衡的大问题。可能荷尔蒙平衡没有大的问题(没有大的瘦素信号问题,多巴胺稳态工作正常,等等…) ?&quot;Metabolic rate&quot; means &quot;rate of O2 consumption&quot;. This is not entirely indicative of a favourable rise in metabolic rate. I would have likely to see a O2 vs CO2 metric, to see how much fat vs carbs they were burning. These men were lean, I wouldn&apos;t be surprised to see a lot of shivering thermogenesis, and a lot of glycogen burning. (what would happen if you put these guys on a no-carb diet for 3 days, deplete all their muscle glycogen, and then run the same test?)“代谢率”指的是“氧气消耗率”。这并不完全表明代谢率出现了有利的上升。我很可能会看到氧气和二氧化碳的比例,看看他们消耗了多少脂肪和碳水化合物。这些人都很瘦,我不会惊讶于看到很多发抖的生热作用和大量的糖原燃烧。(如果你让这些人连续3天不吃碳水化合物,耗尽他们所有的肌糖原,然后进行同样的测试,会发生什么?) ?14 degrees C water. What would happen in even colder water? Colder water requires an even greater biologic response. 14摄氏度的水。在更冷的水里会发生什么?更冷的水需要更强烈的生物反应。 Other ideas I would like to see: 其他我想看到的想法: ?Test FFA levels before and after immersion.在浸泡前后测试FFA水平。 ?Do an OGGT before and after cold immersion to test differences in insulin response.冷浸前后进行OGGT测试胰岛素反应的差异。 ?Do muscle biopsy before and after to test for Intramuscular Trigs, Glycogen levels, UCP activity, and GLUT4 activation.前后做肌肉活检以检测肌内Trigs/糖原水平/UCP活性和GLUT4激活。 ?Do the same test on obese patients and/or sick patients. 对肥胖人或病人做同样的测试。 There are other ideas, but you can see that we MUST check the methods used in a study in order to determine if the suggested mechanism is generalisable. 还有其他的想法,但你可以看到,我们必须检查研究中使用的方法,以确定所建议的机制是否可推广。 On to some results. 一些结果。 Cold water immersion (14 degrees C) lowered rectal temperature and increased metabolic rate (by 350%), heart rate and systolic and diastolic blood pressure (by 5%, 7%, and 8%, respectively) 冷水浸泡(14℃)降低直肠温度,增加代谢率(350%)、心率、收缩压和舒张压(分别提高5%、7%和8%) Again, &quot;metabolic rate&quot; means &quot;Oxygen Consumption&quot;. Increased oxygen consumption is not always a good thing, especially if we do not know what sort of metabolism that increased oxygen consumption is driving. 同样,“代谢率”的意思是“耗氧量”。氧气消耗的增加并不总是一件好事,尤其是当我们不知道氧气消耗的增加推动了什么样的新陈代谢时。 ?Is this increased glycogen metabolism through shivering? Is this increased metaoblic uncoupling fueled by fatty acids? What if we could not achieve an uncoupling response? What happens once glycogen is depleted? Will the body be prompted to try and make more? (and increasing the glucorticoids as a result)颤抖会增加糖原代谢吗?这种增加的代谢解耦是由脂肪酸引起的吗? 如果我们不能实现解耦合响应,该怎么办? 糖原耗尽后会发生什么?身体会被提示去尝试制造更多吗?(并因此增加糖皮质激素) ?What would happen if we eat a lot of carbs before cold exposure? What would happen if we eat a lot of fat? What would happen if we were fasted? Clearly biological-specific mechanisms which modulate the biology of the organism are at play here. 如果我们在寒冷暴露前吃了很多碳水化合物会发生什么?如果我们吃了很多脂肪会发生什么?如果我们禁食会发生什么? 很明显,调节生物体生物学特性的生物特异性机制在这里起作用。 What would happen if cold exposure were to happen first thing in the morning? What if it were to happen?如果早上第一件事就是暴露在寒冷中会发生什么?万一发生了呢? </markdown>
Edit:2025.09.26<markdown> # 冷生热作用是一种激效压力源 杰克・克鲁斯博士在 2011 年底至 2012 年普及了 “冷生热作用”(CT)的概念<https://www.jackkruse.com/category/series-cold-thermogenesis/> 在本文中,我主要假设读者已熟悉相关操作方法。本文旨在就过度使用 CT 可能产生的有害影响发出警示。 急性受冷的做法是有益的。此处无需详细阐述其益处,因为其他资料已对此进行过深入探讨。无论如何,在可耐受范围内进行(个体耐受性存在差异)都是极好的,且大多数人或许并未让自己充分暴露在寒冷环境中。 但 “电荷” 定义背后存在的误解,导致了 “冷总是对身体有益” 这一错误结论。 ## 霍尔效应 首先,克鲁斯提到冷会 “增强量子霍尔效应”。 我并不认同霍尔效应的相关说法。迈尔斯・马西斯对此给出了力学解释<http://tanyewwei.com/notes/mm-hall-effect/> 他已证实,霍尔效应并非什么神奇的量子谬论,而只是两个独立电荷场之间的相互作用,仅在存在外部场的情况下才会发生,并不会神奇地 “增加系统能量”。 要判断霍尔效应在生物学中是否有用,我们必须结合生物结构展开讨论。但我并未看到足够证据表明霍尔效应在生物组织中具有重要意义。 ### 关于磁疗的旁注(在强静磁场中睡眠) 罗伯特・贝克尔的实验证明,对蝾螈神经元施加垂直的强磁场可诱导其进入无意识 / 麻醉状态。这用马西斯的模型很容易解释。 强外部磁场会抵消神经元结构释放的磁性光子(同样,“磁性” 只是电荷场的另一组成部分,由光子构成)。这基本上会关闭某些神经元间的通信通道,进而导致无意识状态。 贝克尔还明确发现,将磁场旋转 90 度可诱导蝾螈产生兴奋性。这同样可用简单的力学原理解释:此时光子会增强神经元的输出场。 ## 一些常识 如果我们真的如此适应寒冷,为何体温要维持在 37℃? 为何鸟类体温高达 40-43℃,却拥有更强的耐寒性,且线粒体渗漏更少?若我们拥有鸟类的线粒体,寿命可能会延长至原来的三倍,且永远不会患癌症。(尼克・莱恩在《能量、性与死亡》一书中有详细阐述) 进行受冷时体温会升高。难道我们追求的不正是身体对寒冷产生的(产热)生物反应吗? 反问一句:当我们无法通过解偶联产热时,会发生什么?混乱便会随之而来! ## 超导性(或超非导电性) 回到机制问题。克鲁斯声称 “寒冷能增强超导性”,或 “当温度降至居里温度附近时,能量效率会更高”。 首先,骨骼的居里温度为 125℃,大多数类型胶原蛋白的居里温度约为 92℃。参考资料:<http://link.springer.com/article/10.1007/BF01857614#page-1> 我们的体温远低于这一数值。也就是说:体温的任何下降都不会影响体内胶原蛋白结构的 “磁相干性”。 衡量胶原蛋白和骨骼传导性的最重要指标是水合作用,因此水是关键因素。但话又说回来,我们需要先理解 EZ 水的作用机制。<http://tanyewwei.com/notes/mm-pollack/> EZ 水,英文全称为 Exclusive Zone Water,中文译为 “禁区水” 或 “排阻区水”。这一概念由华盛顿大学生物工程系教授杰拉德・波拉克(Gerald H. Pollack)提出,他拥有宾夕法尼亚大学博士学位,同时也是科技期刊《水》的创办者及总编辑。在《水的第四相》(The Fourth Phase of Water)一书中,波拉克提出了一种水化学新理论,该理论不仅对化学和生物学领域意义深远,也为我们理解自然及与自然相处的隐喻基础提供了新视角。 波拉克教授经多年研究发现:水除了固态、液态、气态三种形态外,还存在第四种形态 —— 液晶态。 假设有一烧杯水,其中悬浮着数千个塑料微球。传统化学理论认为这些微球会在水中均匀分布 —— 遍布水体大部分区域。但实际情况是,烧杯边缘(即便有亲水性物质沉入水中)的水依然清澈,不含任何微球。原因何在?传统化学认为,玻璃表面可能存在几个分子厚度的禁区,水分子两极与分散电荷相互吸附,但波拉克观察到的禁区厚度至少有 1/4 毫米 —— 相当于数万个分子的厚度。 波拉克及其同事通过精密实验,排除了对流、聚合物冲刷、静电排斥、材料泄漏等多种传统解释。他们还研究了禁区水的特性,结果令人惊喜:禁区水几乎能排斥一切物质,既包括悬浮微粒,也包括溶质。禁区水在 270 纳米处表现出电磁吸收峰值,释放的红外辐射少于普通水,但其粘度和折射率均高于普通水。更令人惊讶的是,他们发现禁区水带有净负电荷,而周边区域 pH 值较低,这表明质子已从禁区水中析出。 基于这些发现,波拉克及其同事提出假设:禁区水由液晶态水构成,其中氧和氢以 2:3 的比例堆积成六边形层状结构。当然,冰也是由六边形薄片堆积而成,但冰片的堆积依赖外部质子的挤压。波拉克认为,禁区水的排列方式较为特殊,每层的氧原子常与相邻层的氢原子相邻。这种排列虽不完美,但其产生的引力大于斥力,足以形成内聚力和分子矩阵,从而排斥哪怕最小体积的溶质。 这种电荷分离所需的能量来自何处?答案是入射电磁辐射。当水样不受电磁辐射和热流影响时,禁区便无法形成。 “EZ水”(Exclusion Zone Water)现象,指水溶液中胶体粒子等大型溶质无法靠近多种亲水性表面,从而形成数十至数百微米厚的 “空乏区”,简称 EZ。目前有理论认为此处形成了特殊结构水,但台湾学者的实验发现磁珠可穿透 EZ 区。因此有学者提出,EZ 是扩散渗流(diffusiosmosis)与扩散泳(diffusiophoresis)共同作用的结果。这一研究成果可用于开发新型溶质过滤萃取技术,或利用离子交换产生的流场开发新型发电方式。 从化学角度分析,EZ 水即 H₃O₂,其结构可表示为 H₂O +・HO,即一个水分子结合一个氢氧自由基。这种分子结构与普通水或冰完全不同,具有活性。有人认为它具有记忆或 “智能”,但这一点仍有待研究。 EZ 水对人体最大的益处在于其属于负离子水。氢氧根离子(化学符号为 OH⁻)中,氢与氧通过共价键连接,整体带一单位负电荷,常与不同元素结合形成氢氧化物。生活中常见的负氧离子空气,其负离子具有镇静、镇痛、镇咳、止痒、利尿、增进食欲、降低血压等功效。例如雷雨过后,空气中负离子增多,人们会感到心情舒畅。 自然界中 EZ 水主要存在于两个地方:一是高山或两极地区的水体,二是雷雨后的雨水。 马西斯再一次从力学角度解释了 “超导性” 的准确含义。(此处为摘录:<http://tanyewwei.com/notes/mm-heat/>) 这其实应称为 “超非导电性”。“导电性” 指材料不会干扰流经它的电荷。 超导材料作为能量源毫无价值,但作为两处或多处之间的电荷传输介质却极具优势。 能量不会凭空产生。如果身体本身没有足够的能量循环(要么摄入不足,要么无法调动储存的能量),即便让胶原蛋白纤维实现超导,也毫无帮助。 但话又说回来,温度对我们的 “胶原蛋白导线” 而言并非关键因素。水合作用才是,而且我们需要弄清楚是什么让胶原蛋白能在体内发挥作用(同样,这属于生物现象,而非严格的物理现象)。 ## 关于胶原蛋白…… 我们知道,最重要的信号传递发生在被细胞水包围的体内胶原蛋白、肌动蛋白和整合素网络中。 我未能找到关于肌动蛋白和整合素的相关研究,但关于胶原蛋白的研究却有很多。以下是部分研究发现的总结。 值得注意的是: * 我们通常需要更高的胶原蛋白传导性以最大化信号传递效率。 * 我们希望能够调节胶原蛋白的形成。 * 不同类型的胶原蛋白具有不同的最佳工作温度。 鱼皮胶原蛋白的传导性在 320-350K(46-76℃)时达到峰值,这一温度高于人体体温。<http://connection.ebscohost.com/c/articles/52588260/electrical-conductivity-fish-skin-collagen-temperature-range-290-380-k> 水合度为 24% 的牛跟腱胶原蛋白遵循电导率方程 σ(h) = A exp (h / T)<http://onlinelibrary.wiley.com/doi/10.1002/bip.1974.360131203/abstract> 由此可见,温度越高,电导率越低。 但这种差异非常微小…… 式中 “A” 是与温度无关的无量纲比例因子,因此要了解不同温度下的测量差异,只需关注 “exp (h / T)” 项即可。 假设: * h = 0.24(24%) * T1 = 283 开尔文(10℃,据克鲁斯称是 “最佳冷生热温度”) * T2 = 310 开尔文(体温) exp(h / T1) = 1.0008484162387228exp(h / T2) = 1.000774493313566效率损失 = 1.000774493313566 / 1.0008484162387228 = 0.9999261397390881 换句话说,温度导致的导电性损失不到 0.0001%。 水合作用才是影响更大的因素 —— 也就是说,蛋白质功能对水化学性质的依赖性远大于对温度的依赖性。 其他研究表明,这种与温度相关的导电性实际上还与环境有关:<http://iopscience.iop.org/0967-3334/24/3/312> 引用:在 25℃<T<90℃范围内,绵羊胶原蛋白的导热系数随温度呈线性变化。 即:温度越高,导电性越好。这与克鲁斯的说法恰好相反。 1 型胶原蛋白具有独特性,在 30℃以上无法形成螺旋结构<http://www.ncbi.nlm.nih.gov/pmc/articles/PMC122187/> 这正是温度依赖性的重要体现。1 型胶原蛋白更多属于外部结构胶原蛋白,存在于肌腱、韧带和部分肌肉中。 引用该研究:除简化清理过程外,这种设计的另一优势可能如下:显然,受限在纤维中的螺旋无法完全 “熔化”,因为这种限制使链无法获得在溶液中那样多的熵(15)。然而,这些分子可根据需要在局部熔化和重新折叠(1),从而使纤维兼具高强度和高弹性。 这对于具有高再生和周转需求的组织而言完全合理。你需要先 “溶解” 胶原蛋白,使其到达正确位置,然后在身体较凉爽的外周区域使其 “凝固”。 但对于大脑、心脏等在高温(35-37℃)下持续工作的组织,蛋白质周转速率并不高,因此影响效率的唯一因素是碳纳米管的导电性。 即:树突微管能容纳多少导体和共振电状态以支持意识活动。 哈梅罗夫(Hameroff)等人一直致力于证明大脑微管的相干性可在高温下维持。<http://arxiv.org/pdf/1405.3170.pdf> 但我认为更重要的是关注迈尔斯・马西斯对量子隧道效应和叠加态的反驳。 * <http://tanyewwei.com/notes/mm-tunneling/> * <http://tanyewwei.com/notes/mm-superposition/> ### 注: 这需要我重新思考整个 Orch-OR 模型(调谐客观还原理论),用更具体的概念取代其中的 “叠加态坍塌”。这或许并不困难,因为微管蛋白片的 “偶极子状态” 可能只是简单的电荷区域,而测量过程显然会导致电荷从被测物体流向测量物体(通过带走被测物体的电荷来 “破坏叠加态”)。 从这个角度看,我仍然认为 Orch-OR 模型具有一定价值。此外,通过重新梳理该模型,我或许能更深入地理解大脑如何利用这些电荷传输过程产生意识。 ## 题外话:血液携氧能力 克鲁斯称 “寒冷能使血液容纳更多氧气”。嗯…… 确实如此,但寒冷虽能增加血液中的氧气含量,却无助于氧气向组织的输送。 维基百科指出,较高温度能为组织提供更多氧气,同时降低血红蛋白对氧气的亲和力。<https://en.wikipedia.org/wiki/Oxygen_saturation_(medicine)> 同样,这在某些情况下可能是好事。但氧气若控制不当也会带来危险(参见尼克・莱恩的《氧气》一书)。 如果组织遭受创伤,你会希望阻止进一步的氧化代谢,此时便需要对其进行冷却。 如果组织需要大量氧气维持运作,则需要加速氧化代谢,此时应使其维持在正常温度(30-37℃)。 “寒冷能增加系统能量” 的说法在生物有机体中并不成立。 ## 题外话:血液二氧化碳水平 众所周知,二氧化碳与血红蛋白向相应组织输送氧气的能力密切相关。我们还知道,体温过低时呼吸频率会下降,二氧化碳张力通常会降低,氧气输送能力也会随之下降。 维持良好的代谢状态对健康至关重要 —— 在这种状态下,代谢底物(碳水化合物、脂肪等)被完全氧化,并产生适量的二氧化碳。 旁注:支持碳水化合物驱动代谢的论点之一是,与脂肪氧化相比,碳水化合物氧化能产生更多二氧化碳(以及支持进一步氧化代谢的 NAD+)。 对寒冷暴露的成功应对包括维持核心体温,甚至使其略有升高。这是冷生热作用产生积极效果的良好指标,因此一种可能的做法是:仅在核心体温能够维持的情况下进行 CT。 但仍需明确的是,寒冷本身作为一种压力源,会引发应激反应。维姆・霍夫(Wim Hof)曾提到,寒冷暴露会使人肾上腺素水平升高。同样,在适当 “剂量” 下,这能增强抗压能力;但 “剂量” 过高,则会导致慢性应激状态(糖皮质激素水平过高、血糖调节能力下降等)。 好了,我们继续讨论其他话题…… ## 表面组织冷却 克鲁斯提出的观点之一是,表面层冷却 “通过拓扑绝缘体的方式增加了系统能量”。 我将从皮肤和表层作为界面层(身体内外界面)的角度来探讨这一话题。 我们可以参考的领域之一是中国针灸。穴位和经络显然是检测到高电磁场的区域。<http://www.i-sis.org.uk/lcm.php> 可以忽略前文对 “液晶结构” 的夸张描述,但其中关于行为的描述仍然成立 —— 这些 “胶原蛋白导线” 是电荷流动增强的区域,连接着身体的各个部位。 如果冷暴露确实能通过提高能量效率影响表层以下的组织,那么正是这些胶原蛋白通路在发挥作用,进而影响心脏、肾脏、肝脏、大脑等深层器官。 由于这些是 “电荷导线”,具有超(非)导电性,因此冷却在此可能有益。但问题在于: * 我们能否真正将这些胶原蛋白经络冷却到足以改善生物功能的程度? * 为应对寒冷而付出额外的生物适应性调整和 / 或应激反应,这种代价是否值得? 注:是的,血液也可以冷却。但仅冷却血液(a)并非冷却身体的有效方式;(b)显然对正常功能有害(原因如前文所述)。不过,冷却血液对治疗脑外伤等情况确实非常有效。<http://thejns.org/doi/abs/10.3171/jns.2004.100.2.0272> 因此,关于皮肤作为界面这一问题,我认为皮肤只是一个均匀的界面层,并不会为身体其他部位带来特定的效率提升。 我这样认为是因为,已知的穴位除了分布在手脚和头部外,其他都位于较深的位置。<http://www.hindawi.com/journals/ecam/2013/740508/> ## 经络深度与激光针灸旁注 我们讨论的大多数穴位深度至少为 10 毫米,最深可达 50 毫米。有充分证据表明,波长略高于 800 纳米的红色激光可穿透至 30 毫米深度。<https://www.google.com/patents/US6312451> 紫外线激光的穿透深度则较浅。<http://www.researchgate.net/publication/234720204_Comparison_of_wavelength-dependent_penetration_depths_of_lasers_in_different_types_of_skin_in_photodynamic_therapy> 因此,应选用波长略高于 800 纳米的脉冲激光。值得庆幸的是,这类激光使用起来相当安全,因此我认为 —— ## 回到皮肤作为界面的话题 但回到皮肤本身,如果它真的能通过连续的胶原蛋白导线对身体各个系统产生直接影响,那么我们进行针灸时就无需刺得那么深了。 皮肤作为屏障,将除少数表层经络外的所有经络与外界隔绝,这一说法也合乎情理。 我的前提是:要获得良好的治疗效果,需要同时激活表层和内部经络。 那么,皮肤在能量层面起到了什么作用?就我个人而言,我认为它只是将入射光转换为身体可利用的能量水平。 寒冷在这一过程中有帮助吗?我个人认为答案是否定的。 * 你知道那些用于测量体脂的生物阻抗秤吗?我们知道,温度升高会增强皮肤的导电性。<http://europepmc.org/abstract/med/3193865> * 黑色素是一种神奇的化合物,能将任何光线转化为红外光,而它同样主要依赖于水合状态。<http://www.pnas.org/content/109/23/8943.full> 若观察相关数据便会发现,温度升高很可能会增强导电性,这其实意味着皮肤能引导并转化更多入射光,为身体提供可用能量。水合作用仍是首要因素,而非温度。 我仍然认为寒冷是身体的重要信号。它能向身体其他系统发送信号,并通过生物过程促使系统做出调整,例如提高甲状腺激素的利用效率、产生更多黑色素(可能是因为能量不足)、增强对睾酮的敏感性等。 但同样,这是一个生物过程,且受多种生物驱动因素影响。例如:像你这样的北方人或许本能地会更多地进行呼吸解偶联,而我这样瘦高的热带人则不会。实际上,寒冷可通过你那解偶联程度更高的线粒体呼吸过程,帮助身体调动更多可用能量。 但我仍无法认同 “寒冷能增加能量” 或 “寒冷能提高能量效率” 这一假设,因为针对生物组织和无机材料的实验均得出了相反结论。 ## 手和脚是例外 我们知道这些部位泄漏的生物光子最多,因此胶原蛋白经络在这些区域更接近体表,这一说法合乎情理。 再加上这些部位静脉血流丰富,我确实认为手和脚的冷生热作用可能对身体其他系统产生直接影响。 这种影响是否有益仍有待确定,但我个人认为,长期冷暴露并非一种有益的治疗方式。我更倾向于将冷却与穴位激光刺激结合使用的思路。 冷却或许能拓宽通道以增强导电性,而激光则能更好地激活穴位。 此外,是否需要冷却仍有待观察,但我推测它可能有用 —— 但仅对手和脚有用。因为冷却实际上会带走血流,从而减少(血液等)吸收入射激光的物质,进而提高激光治疗中的能量传递效率。 但问题是,当经络已如此接近体表时,我们还需要更高的能量传递效率吗?我认为不需要。这意味着寒冷本身从一开始就并无用处。 对于深层穴位,我很难相信寒冷能 “为激光激活扫清障碍”,简单来说,要想作用于大腿内侧深处的某个肝经穴位,“你到底该如何冷却大腿内侧” 呢? 我推测,冷却带来的效果并不显著,不足以抵消额外治疗步骤、设备投入带来的麻烦,更不用说还会引起患者不适。 ## 结论(目前) 寒冷会降低有机体的能量,会减缓身体各项进程、减少电荷等…… 在我看来,这并非最佳的身体机能状态。 但在许多场景中仍十分有用 —— 例如手术和创伤治疗。 在控制 “剂量” 的前提下,仍能有效引发适当的生物反应。这些 “剂量” 可能比大多数人想象的要高 —— 例如:大多数健康人或许能从在冰湖中浸泡 10 分钟获益。但 30 分钟呢?不行。并非越冷越好。(不过大多数人仍然很怕冷……) 但从物理层面宣称寒冷本质上有益是错误的,无疑是一种生物激效作用。 在生物系统中,胶原蛋白的水合作用对其功能的影响远大于温度。 胶原蛋白结构的健康与否,取决于其在需要时形成亲水螺旋的能力,以及能否转化为 “凝胶状” 可塑糊状物并沉积到所需部位的能力。 从这个角度看,我认为任何扰乱现有胶原蛋白结构的因素都极具危害。对胶原蛋白最具破坏性的刺激因素可能是强非天然电磁场和各种声波,它们能过度刺激胶原蛋白结构并导致其失水。 ## 需要个人测试 有些人能够通过适当的生物机制应对寒冷,不仅能抵御寒冷,还能在寒冷环境中茁壮成长。由于线粒体电子传递链解偶联产热,长期冷暴露人群的代谢率存在约 15% 的差异。 一个人能否适应寒冷环境取决于诸多因素。根据我的经验,这与基因和血统的关系不大,更多地取决于个体自身的身体构成(由主流科学无法解释的因素驱动)。 我更推崇在冷暴露后进行持续测试的方法。你的甲状腺功能如何?各经络穴位(尤其是肾上腺相关穴位)的连贯性如何?你感觉怎样?睡眠质量如何?等等。 只要冷暴露后身体连贯性指标有所改善,我就认为这是有益的。若出现相反情况,我会建议减少冷暴露,直至潜在问题得到解决。 冷生热是一种需合理使用的工具。 ## 更新 [2015 年 11 月 17 日,周二]:对某篇论文的回应 有人向我推荐了一篇题为《人类对浸入不同温度水体的生理反应》的论文。该论文据称展示了冷暴露的部分益处。(<http://www.ncbi.nlm.nih.gov/pubmed/10751106>) 请留意实验条件: * 10 名男性青年,年龄 20-24 岁。年轻就是资本😉 * 受试者均为男性 —— 无法保证女性会有相同或不同的反应。 * 全身浸泡(头部除外)1 小时。强度极大!!! * 皮肤褶皱测量显示其平均体脂率为 10.2%。体型偏瘦,维持脂肪量稳态无疑无重大问题。荷尔蒙平衡或许也无重大异常(无明显瘦素信号问题、多巴胺稳态正常等) * “代谢率” 指 “耗氧率”。这并不完全能表明代谢率出现了有利提升。我更希望看到氧与二氧化碳的相关指标,以了解他们燃烧了多少脂肪和碳水化合物。这些受试者体型偏瘦,若观察到大量寒颤产热和糖原燃烧,我并不会感到惊讶。(若让这些人连续 3 天不摄入碳水化合物,耗尽所有肌糖原后再进行相同测试,会发生什么?) * 水体温度为 14℃。若水温更低会怎样?更低的水温需要更强的生物反应。 我还希望看到的其他研究方向: * 浸泡前后的游离脂肪酸(FFA)水平测试。 * 冷浸泡前后进行口服葡萄糖耐量试验(OGGT),以测试胰岛素反应差异。 * 浸泡前后进行肌肉活检,以检测肌内甘油三酯、糖原水平、解偶联蛋白(UCP)活性及葡萄糖转运蛋白 4(GLUT4)激活情况。 * 对肥胖患者和 / 或患病患者进行相同测试。 还有其他一些想法,但你会发现,我们必须仔细核查研究中使用的方法,才能确定所提出的机制是否具有普适性。 以下是部分研究结果。 冷水浸泡(14℃)使直肠温度降低,代谢率提高 350%,心率、收缩压和舒张压分别升高 5%、7% 和 8%。 同样,“代谢率” 指 “耗氧量”。耗氧量增加并非总是好事,尤其是当我们不清楚这种增加是由何种代谢过程驱动时。 * 这是由寒颤引起的糖原代谢增加吗?这种代谢解偶联增强是由脂肪酸供能的吗? * 若无法实现解偶联反应会怎样? * 糖原耗尽后会发生什么?身体会被刺激产生更多糖原吗?(结果可能导致糖皮质激素水平升高) * 受冷前摄入大量碳水化合物会怎样?摄入大量脂肪会怎样?乏食状态下会怎样? 显然,调节机体生物学特性的生物特异性机制在此发挥了作用。 若早晨醒来第一件事就是受冷会怎样?若发生这种情况又会怎样? </markdown>
Edit:2025.09.26 <markdown> </markdown> 讨论列表 <html> <a href=http://akp.ct.ws/bbs/>AKP讨论</a> <a href=http://akp.ct.ws/bbs/d/10>查看原帖及回帖</a> </html>


